Integrating AVITI24 Data with Seurat
Seurat is a package in the software R that enables the analysis and investigation of single-cell multiomic data. This tutorial describes how to convert AVITI24 output data into a format for use with Seurat.
Before You Begin
Make sure you have the following prerequisites for this tutorial:
- A
RawCellStats.parquet
file from a cytoprofiling run - R software
- R Seurat package
- R cytoprofiling package
The following command installs the Seurat packages in R:
install.packages("Seurat")
Install the cytoprofiling package by following the instructions at https://github.com/Elembio/cytoprofiling/tree/v1.0.0?tab=readme-ov-file#installation
Convert Data for Seurat
- Run the following commands to load the
RawCellStats.parquet
data into R. Forinput_filename
, use the file path to theRawCellStats.parquet
file from your run.
library("Seurat")
library("cytoprofiling")
input_filename = "C:/location/of/RawCellStats.parquet"
aviti24_data <- load_cytoprofiling(input_filename)
- Filter and normalize the imported data.
aviti24_data <- normalize_cytoprofiling(filter_cells(aviti24_data))
- Convert the AVITI24 data into the data format compatible with Seurat.
seurat_data <- cytoprofiling_to_seurat(aviti24_data)
- Test your data with a workflow from the Seurat website.
The following commands are adapted from the Seurat Guided Clustering Tutorial and provide an example workflow to test with your data.
seurat_data <- NormalizeData(seurat_data, normalization.method = "LogNormalize", scale.factor = 10000)
seurat_data <- FindVariableFeatures(seurat_data, selection.method = "vst", nfeatures = 50)
all.genes <- rownames(seurat_data)
seurat_data <- ScaleData(seurat_data, features = all.genes)
seurat_data <- RunPCA(seurat_data, features = VariableFeatures(object = seurat_data), npcs=20)
seurat_data <- RunUMAP(seurat_data, dims = 1:10)
DimPlot(seurat_data, reduction = "umap")